The describe function in R: How to use describe() in R

describe in R

Today, we will use the describe function in R, which takes the form of describe (dataset). Any data type, including missing data, can be passed to the function. It generates a contingency table that provides details about the dataset. The data structure examines the actual content of the table.

What is describe function in R?

The most useful summary statistics for scale design and item analysis in traditional psychometrics are provided by this function out of the various summary statistics available in R. Range is particularly helpful when running through a data set once to look for coding problems.

The syntax of Describe in R

describe(data,na.rm=TRUE,type=3,interp=FALSE, 
         skew=TRUE,ranges=TRUE,
         IQR=FALSE,omit=FALSE,data=NULL,
         check=TRUE,fast=NULL,quant=NULL)

Parameters:

  • data: is a matrix, dataframe, vector, …
  • na.rm: If na.rm==FALSE, remove the case. The default will delete missing values.
  • interp: The median of a standard.
  • ranges: The ranges.
  • data: Formula input for particular grouping variables is possible.

The example of this function

First, we will use the psych package for this function. You can click this link to learn how to install the package.

Or you can run the code below if you still need to get it automatically on-site download.

if(!require('psych')) {
  install.packages('psych')
  library('psych')
}

We can use the describe function in R to describe the iris dataset, which is available in R.

# describe iris dataset
des <- describe(airquality)
des

# print names
print("The names in describe(airquality): ")
names(des)

Output

	vars	n	mean	  sd	        median	trimmed	mad
Ozone	1	116	42.1293	  32.9879	31.5	37.7979	25.9455
Solar.R	2	146	185.9315  90.0584	205	190.339	98.5929
Wind	3	153	9.9575	  3.523	9.7	9.8699	3.41
Temp	4	153	77.8824	  9.4653	79	78.2846	8.8956
Month	5	153	6.9935	  1.4165	7	6.9919	1.4826
Day	6	153	15.8039	  8.8645	16	15.8049	11.8608
	min	max	range	skew	  kurtosis	       se
Ozone	1	168	167	1.2099	  1.1122	      3.0628
Solar.R	7	334	327	-0.4193	  -1.0041	      7.4533
Wind	1.7	20.7	19	0.341	  0.0289	      0.2848
Temp	56	97	41	-0.3705	  -0.4629	      0.7652
Month	5	9	4	-0.0023	  -1.3167	      0.1145
Day	1	31	30	0.0026	  -1.2224	      0.7167

[1] "The names in describe(airquality): "
'vars''n''mean''sd''median''trimmed''mad''min''max''range''skew''kurtosis''se'

We can round digits or significant digits as follows:

# Initial dataset
des <- describe(airquality)
names(describe(airquality))

print("Round to 2 digits: ")
print(des,digits=2)

print("Round the 2 significant digits" )
print(des, signif=2)

Output


'vars''n''mean''sd''median''trimmed''mad''min''max''range''skew''kurtosis''se'

[1] "Round to 2 digits: "
        vars   n   mean    sd median trimmed   mad  min   max range  skew
Ozone      1 116  42.13 32.99   31.5   37.80 25.95  1.0 168.0   167  1.21
Solar.R    2 146 185.93 90.06  205.0  190.34 98.59  7.0 334.0   327 -0.42
Wind       3 153   9.96  3.52    9.7    9.87  3.41  1.7  20.7    19  0.34
Temp       4 153  77.88  9.47   79.0   78.28  8.90 56.0  97.0    41 -0.37
Month      5 153   6.99  1.42    7.0    6.99  1.48  5.0   9.0     4  0.00
Day        6 153  15.80  8.86   16.0   15.80 11.86  1.0  31.0    30  0.00
        kurtosis   se
Ozone       1.11 3.06
Solar.R    -1.00 7.45
Wind        0.03 0.28
Temp       -0.46 0.77
Month      -1.32 0.11
Day        -1.22 0.72
[1] "Round the 2 significant digits"
        vars   n mean   sd median trimmed  mad  min max range skew kurtosis  se
Ozone      1 120   42 33.0   31.0    38.0 26.0  1.0 170   170  1.2     1.10 3.1
Solar.R    2 150  190 90.0  200.0   190.0 99.0  7.0 330   330 -0.4    -1.00 7.5
Wind       3 150   10  3.5    9.7     9.9  3.4  1.7  21    19  0.3     0.03 0.3
Temp       4 150   78  9.5   79.0    78.0  8.9 56.0  97    41 -0.4    -0.50 0.8
Month      5 150    7  1.4    7.0     7.0  1.5  5.0   9     4  0.0    -1.30 0.1
Day        6 150   16  8.9   16.0    16.0 12.0  1.0  31    30  0.0    -1.20 0.7

Summary

So, the above is all I want to share with you, and I hope you understand Describe in R better. If you have any questions, please leave a comment below, and I will answer your questions.

Good luck!

Maybe you are interested:

Posted in R

Leave a Reply

Your email address will not be published. Required fields are marked *